Oxidative Functional Group Transformations with Hydrogen Peroxide Catalyzed by Divanadium-Substituted Polyoxometalates

<u>Noritaka Mizuno</u>¹*, Keigo Kamata¹, and Kazuya Yamaguchi¹ ¹Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan *tmizuno@mail.ecc.u-tokyo.ac.jp

Introduction

Polyoxometalates are a large family of anionic metal-oxygen clusters of early transition metals and stimulated many current research activities in broad fields of science such as catalysis, material, and medicine, because their chemical properties such as redox potentials, acidities, and solubilities in various media can finely be tuned by choosing constituent elements and counter cations. Herein, we report various of oxidative functional kinds group transformations with H₂O₂ catalyzed by divanadium-substituted polyoxotungstates (Fig. 1): (i) Efficient, stereospecific, diastereoselective, and regioselective epoxidation of alkenes catalyzed by $[\gamma - H_2 SiV_2 W_{10}O_{40}]^{4-}$ (I) [1,2], (ii) regioselective hydroxylation of alkanes catalyzed by $[\gamma - H_2 P V_2 W_{10} O_{40}]^{3-}$ (II) [3], and (iii) oxidative bromination (chlorination) of alkenes, alkynes, and aromatics [4].

он V он V

Figure 1. Molecular structures of the anion parts of **I** (X=Si) and **II** (X=P).

Experimental

The tetra-*n*-butylammonium salts of I and II were synthesized according to the literature procedures [1,3]. The catalytic reactions were carried out with a glass tube (30 mL) containing a magnetic stir bar. The catalyst, solvent, and substrate were charged in the reaction vessel. The reaction was initiated by the addition of 30% aqueous H_2O_2 . The reaction solution was

periodically analyzed by GC, GC-MS, and NMR. The $Ce^{3^{+/4^+}}$ titration showed that no H_2O_2 remained after the reaction.

Results/Discussion

Compound I could catalyze the epoxidation of various kinds of alkenes with H_2O_2 with high epoxide yields and high efficiencies of H_2O_2 utilization under very mild reaction conditions (Table 1). Non-activated aliphatic terminal C3–C10 alkenes including propylene could be transformed to the corresponding epoxide with \geq 99% selectivities and \geq 87% efficiencies of H_2O_2 utilization. The epoxidation of 3-substituted cyclohexenes diastereoselectively gave the corresponding epoxides with oxirane ring *trans* to the substituents (i.e., *anti* configuration). Further, it is noted that more accessible, but less nucleophilic double bonds in non-conjugated dienes were highly regioselectively epoxidized in high yields [1,2]. While the hydroxylation of alkanes catalyzed by I also proceeded, the reaction rate was very low.

Table 1. Epoxidation of various alkenes with H₂O₂ catalyzed by I.^a

Entry	Substrate	Yield (%)	Product (Selectivity (%))	H ₂ O ₂ efficiency (%)
1 ^b	$R = CH_3$	87	$R = CH_3$ (99)	87
2	$\bigwedge_{R} R = n - C_4 H_9$	92	$R = n - C_4 H_9$ (99)	92
3	$R = n - C_6 H_{13}$	93	$^{\sf R}$ R = <i>n</i> -C ₆ H ₁₃ (99)	93
4	R = <i>n</i> -C ₈ H ₁₇	93	$R = n - C_8 H_{17}$ (99)	93
5	\bigcup	91	0 (97) <i>syn/anti</i> = 5/95	91
6	ОН	87	O OH (95) <i>syn/anti</i> = 12/88	91
7		91	O (>99)	91
8		90	(99)	91

^a Reaction conditions: **I** (5 mol% with respect to substrate and H₂O₂), alkene (0.1 mmol), 30% aqueous H₂O₂ (0.1 mmol), CH₃CN/*t*-BuOH (1.5/1.5 mL), 20°C, 24 h. Yield (%) = products (mol)/initial H₂O₂ (mol) × 100. H₂O₂ efficiency (%) = products (mol)/H₂O₂ consumed (mol) × 100. ^b Propylene (6 atm).

In order to improve the catalytic activity of **I**, we changed the central heteroatom from Si(IV) to P(V). Compound **II** could catalyze the oxidation of various kinds of cyclic alkanes with H_2O_2 . The oxidation of cyclic alkanes proceeded selectively to afford the corresponding alcohols (\geq 98% selectivity). Acyclic *n*-hexane was also hydroxylated to the corresponding alcohols with \geq 96% selectivity. Notably, the present system also showed the unusual regioselectivity to the secondary alcohols for the oxidation of some cycloalkanes with both secondary and tertiary C–H bonds (Table 2). The oxidation of *trans*-1,2-dimethylcyclohexane with two adjacent tertiary C–H groups, the selectivities to *trans*-3,4-dimethylcyclohexanol was 86%. Such a high regioselectivity to the only one secondary alcohol even in the presence of the more electron-rich tertiary C–H bonds has never been reported [3].

Compound II showed the high catalytic performance for the H_2O_2 -based oxidative bromination of various alkenes, alkynes, and aromatics in a mixed solvent of acetic acid and 1,2-dichloroethane under very mild reaction conditions (eq 1) [4]. When the bromination of 1octene was carried out with II (0.05 mol%) using stoichiometric amounts of H_2O_2 and NaBr, 90% yield of 1,2-dibromoctane was obtained within only 10 min, showing the high efficiencies of H_2O_2 and Br⁻ utilizations (\geq 90%). Various kinds of structurally diverse alkenes, alkynes, and aromatics could be converted into the brominated compounds in high yields.

In conclusion, I and II showed the high catalytic activities for the H_2O_2 -based oxidative functional group transformations including epoxidation, hydroxylation, and bromination.

References.

- 1. Y. Nakagawa, K. Kamata, M. Kotani, K. Yamaguchi, N. Mizuno. Angew. Chem. Int. Ed., 44, 5136 (2005)
- 2. Y. Nakagawa, N. Mizuno, Inorg. Chem., 46, 1727 (2007)
- 3. K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara, N. Mizuno. *Nature Chem.*, **2**, 478 (2010)
- 4. K. Yonehara, K. Kamata, K. Yamaguchi, N. Mizuno, Chem. Commun., 47, 1692 (2011)

$1 able 2$. Regiosciective invelopy ration of various cycloarkanes with 11_2O_2 catalyzed by \mathbf{H} .	Table 2.	Regioselective	hydroxylatio	n of various	cycloalkanes	with H ₂ O ₂	catalyzed by II. ^a
--	----------	----------------	--------------	--------------	--------------	------------------------------------	-------------------------------

Entry	Substrate	Yield (%)	Product (Selectivity (%))	[2° alcohols] /[3°alcohols]
1		59	$(4) \qquad (86) \qquad (86)$	90/10
2 ^b	H L	51	(93)	>99/<1
3 ^c	H H H	72	$\bigcup_{H}^{OH} (22) \qquad H \qquad $	78/22
4 ^d		75	(19) (6) (44) (24)	81/19
5 ^e	Et	64	$(4) \qquad \qquad$	97/3
6 ^f	t-Bu	67	t-Bu t -Bu $OH(63)OH$ (24) OH	>99/<1

^a Reaction conditions: $[(n-C_4H_9)_4N]_4[\gamma-HPV_2W_{10}O_{40}]$ (1.3 mM), HClO₄ (1.3 mM), alkane (2.5 M), 30% aqueous H₂O₂ (50 mM), CH₃CN/t-BuOH (0.67/1.33 mL), 60°C, reaction time (1 h (entries 1–4), 2 h (entries 5 and 6)). Yield (%) = products (mol)/initial H₂O₂ (mol) × 100. The values in the parentheses are isolated yields. ^b *trans*-2-Decalone (7% selectivity). ^c *cis*-2-Decalone (1% selectivity). ^d 3-Methylcyclohexanone (4% selectivity) and 4-Methylcyclohexanone (2% selectivity). ^f 3-tert-Butylcyclohexanone (10% selectivity)vand 3-tert-Butyl cyclohexanone (3% selectivity).