Impact of feed composition on the reactivity of M1 catalyst

Lénárd I. Csepei¹, Yury V. Kolenko, Frank Girgsdies, Annette Trunschke* and R. Schlögl Fritz Haber Institut der Max Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany * trunschke@fhi-berlin.mpg.de

Introduction

The employment of catalytic membrane- and multistage reactors are reported to be more efficient compared to conventional fixed bed reactors in oxidation catalysis [1,2]. This study addresses the effect of staged addition of oxidizing and reducing gases on propane oxidation to acrylic acid over phase pure M1 MoVTeNbO_x catalyst.

Experimental

The MoVTeNbO_x catalyst has been prepared by spray drying, which lead to an M1+M2 phase mixture [3]. After calcination, the M2 phase was removed by treatment with H₂O₂. Heat treatment at 873K lead to M1 phase with elemental composition of Mo_{1,00}V_{0,26}Te_{0,09}Nb_{0,17}O_{4,00} as determined by ICP-OES analysis. The catalytic reaction has been performed in a reactor system consisting of two serially connected reactor tubes. A valve system permitted gas sampling from the first reactor only (single-tube reactor mode, designated as STR) and from the outlet of the second reactor (two-stage reactor mode, designated as TSR). The addition of different gases (O₂, N₂O, C₃H₆, CO and CO₂) was performed via a T-junction installed between the reactors. In the TSR operation mode the feed composition at the inlet of the first reactor was C₃H₈/O₂/H₂O/N₂=3/6/40/51vol%. The concentration of the added gases was varied, while the temperature of both reactors was set to 400°C. GC-MS has been used for on-line analysis of the gas leaving the second reactor tube. *In situ* XRD measurements, where the oxygen content was varied, have also been carried out.

Results/Discussion

The maximum selectivity to acrylic acid in the STR operation mode corresponds to a space velocity of 4500 h⁻¹ and a feed composition of $C_3H_8/O_2/H_2O/N_2=3/6/40/51vol\%$. The various O_2 contents employed in the STR experiments at this space velocity covered reducing (4 vol%), stoechiometric (6 vol%) and oxidizing (8, 10 and 12 and 15 vol%) conditions, respectively. As Figure 1 demonstrates, propane conversion (X_{C3H8}) and acrylic acid selectivity (S_{AA}) is independent on whether the initial O_2 concentration is introduced in stoichiometric ratio or in five-fold excess. Under reducing conditions, both X_{C3H8} and S_{AA} are inferior to those determined under stoichiometric and oxidizing conditions. *In situ* XRD measurement under various O_2 concentrations revealed no phase change and no significant change in lattice

parameters. Varying the O_2 content in the TSR operation mode revealed that at 12 vol% overall O_2 concentration, the X_{C3H8} was increased by 1,1%, the S_{AA} increased by 4,7% (absolute increase). Therefore the yield increased with 5,3% compared to the measurement with 6 vol% overall O_2 content.

Figure 1. The effect of oxygen concentration in STR and TSR operation mode.

Addition of N_2O instead of O_2 in the TSR did not influence the catalytic properties. Moreover, the concentration of N_2O in the effluent gas was found to be identical to that in the inlet stream, regardless of concentration. This led to the conclusion that N_2O is an inert gas in propane oxidation over the phase pure M1 catalyst, although it has been reported a more efficient oxidant than O_2 in C_3H_8 oxidative dehydrogenation reaction [4]. The inability of the catalyst to split N_2O suggests a low abundance of electrophilic species under working conditions.

The entire added amount of propylene was converted to acrylic acid, acetic acid, CO and CO₂.

 CO_2 and CO addition had no effect on the product distribution. A separate experiment on CO oxidation in STR mode showed very poor activity (X_{CO}<1,5% at 400°C, GHSV=3000 h⁻¹), suggesting low abundance of electrophilic oxygen species on the catalyst surface [5].

References.

- 1. A. Bottino, G. Campanelli, A. Comite, J. Membr. Sci., 197 (2002) 75-88
- 2. S. T Oyama, X. Zhang, J. Lu, Y. Gu, T. Fujitani, J. Catal., 257 (2008) 1-4

3. T. Ushikubo, H. Nakamura, Y. Koyasu, S. Wajiki, US Patent 5 380 933 (1995) assigned to Mitsubishi Kasei Corporation

- 4. E.V. Kondratenko, M. Cherian, M. Baerns, Catal. Today, 112 (2006) 60-63
- 5. J. Hermann, Catal. Today, 112 (2006) 73-77