The role of the support of Mn-Na-W/Silica and Na-W/Silica

<u>Mahmut Yildiz¹</u>*, Sebastian Arndt¹, Ulla Simon¹, Yilmaz Aksu¹, Arne Thomas¹, Helmut Schubert¹, Reinhard Schomäcker¹ ¹Technical University Berlin, Berlin, 10623, Germany *mahmut.yildiz@mailbox.tu-berlin.de

Introduction

The reserves of natural are considered to be one of the most important future alternatives to the decreasing reserves of crude oil. Methane is the major component of natural gas [1]. For this reason, the direct methane conversion to the value-added products via the oxidative coupling of methane is of great interest for the chemical industry. However, up to date an industrial application has not been realized due to a lack of active and stable catalysts [2]. Mn/Na₂WO₄/SiO₂ catalyst system is known in the literature to be an active and stable catalytic system [3]. However, many facts are still unknown, for example the role of the support material SiO₂. Therefore, we studied a broad variety of support materials to elucidate its role.

Experimental

 $Na_2WO_4/Support$ and $Mn/Na_2WO_4/Support$ catalysts were prepared, via an adapted incipient wetness impregnation method [4]. ZrO_2 , TiO_2 , Fe_2O_3 , SiO_2 , Al_2O_3 , MgO, CaO, La_2O_3 and SrO were applied as the support materials, with a relatively low surface area with respect to the SiO_2 and Al_2O_3 . The synthesized catalysts were characterized by BET surface area and X-ray diffraction analysis. The oxidative coupling of methane (OCM) was carried out in a packed-bed reactor, with respect to the stability of the catalyst.

Results/Discussion

Figure 1 shows the preliminary results for Na_2WO_4 and Mn/Na_2WO_4 supported on SiO₂ and Al₂O₃. It is evident, that the activation of CH₄ takes place for both catalysts and both support materials. Moreover, Al₂O₃ as support material exhibits the highest CH₄ conversions, however, with the main drawback of rather low C₂-selectivities. The CH₄ conversions of 2%Mn/5%Na₂WO₄/SiO₂ and especially of 5%Na₂WO₄/SiO₂, is low, which could also be a reason for their high selectivities.

The reason of the low C_2 selectivity of the Al_2O_3 -supported catalysts could be their substantially higher surface areas. Besides, when the XRD patterns of the catalysts have been taken into account, it seems that the cristobalite phase of the SiO₂-supported catalysts might be needed for the good C_2 selectivity.

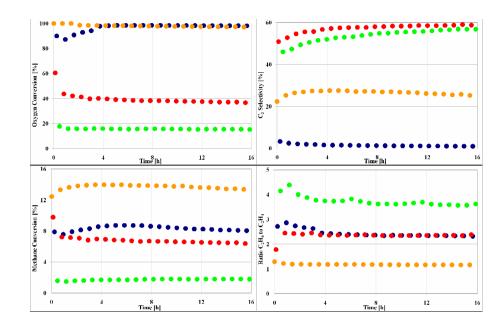


Figure 1. Catalytic activities of the Al_2O_3 and SiO_2 supported catalysts (• 5%Na₂WO₄/Al₂O₃, • 5%Na₂WO₄/SiO₂, • 2%Mn/5%Na₂WO₄/Al₂O₃, • 2%Mn/5%Na₂WO₄/SiO₂, T: 750°C, CH₄:O₂:N₂ = 4:1:4, catalyst amount: 50 mg, gas flow: 60 ml/min).

References.

1. E. Kondratenko and M. Baerns in "Handbook of Heterogeneous Catalysis", Wiley-VCH, Chapter 13.17.1, 3010 (2008).

- 2. J. H. Lunsford, Angew. Chem. Int. Engl., 34, 970 (1995).
- 3. S. Pak and J. H. Lunsford, Appl. Catal. Gen., 168, 131 (1998).
- 4. S. Pak, P. Qui and J. H. Lunsford, J. Cat., 179, 222 (1998).