Oxidative dehydrogenation of alkanes over vanadium oxide prepared with V(t-BuO)₃O and Si(OEt)₄ in the presence of polyethyleneglycol

Kenta Fukudome, Naoki Ikenaga, Toshimitsu Suzuki and Takanori Miyake Department of Chemical, Energy and Environmental Engineering, Kansai University, Suita, 564-8680, Japan k027802@kansai-u.ac.jp

Introduction

Vanadium-based catalysts have been used for oxidative dehydrogenation (ODH) of alkanes [1]. In particular, V-incorporated into mesoporous silica frame such as V-MCM-41 and V-MCM-48 have been reported to exhibit high activity for ODH of propane (ODHP) [2].

The objective of this work is to obtain higher concentration of vanadium oxide species incorporated into SiO_4^{4-} -based frame using polyethyleneglycol (PEG), vanadium alkoxide and TEOS. To achieve this, the sol-gel method was employed. We have found that thus obtained V-SiO₂ exhibited high propylene selectivity for the ODHP with lattice oxygen (reaction 1). $C_3H_8 + V_2O_5 \rightarrow C_3H_6 + H_2O + V_2O_3$ (1)

Experimental

A high surface area V-SiO₂ was synthesized from TEOS and V(*t*-BuO)₃O (V(OR)) under N₂ atmosphere in the presence of PEG (ethylene oxide unit x= 3, 10 and 25). Above mixed solution (toluene as solvent) was heated from 50 to 130 °C for 5 h and then at 140 °C for 1 h under reduced pressure. After pulverizing the residual gel, it was calcined at 600 °C for 5 h in air. The obtained materials were denoted as V-SiO₂-PEGx. For comparison, V/SiO₂ was prepared by impregnating an aqueous solution of NH₄VO₃ with SiO₂ (SA= 283 m²/g) and the catalyst precursor was calcined at 600 °C for 5 h in air.

The ODH reaction was carried out with a fixed-bed flow-type quartz reactor equipped with two feed systems of propane and air at 450 °C. Before the reaction, the catalyst was treated with air at 450 °C for 30 min. Reaction products were analyzed with an on-line gas chromatograph (hydrocarbons and H_2) and an FID gas chromatograph (CO, CO₂) equipped with a methanizer.

Results/Discussion

Reaction of TEOS and V(OR) in the presence of PEGx afforded a gel during heating at 50-130 °C by alkoxy-exchange reaction below:

Si(OEt)₄ + V(OR)₃O + PEG \leftarrow (OEt)₃Si-O-(CH₂-CH₂)_n-O-V(OR)₂O + EtOH + *t*-BuOH (2). Without V(OR), the gel formation was not observed. Calcined solid exhibited high surface areas, and relatively uniform pore diameters of 3-5 nm, and it contained 8.3 wt% of V₂O₅. This

value is ten times larger than that in V-MCM-41 [2].

Figure 1 shows Raman spectra of V/SiO₂ and V-SiO₂-PEGx. V/SiO₂ (Fig. 1a) exhibited a weak broad peak at 1040 cm⁻¹ and sharp peaks at 996, 704, 526, 487, 405, 289, 205 and 147 cm⁻¹. The peak at 1040 cm⁻¹ is assigned to the V=O vibration of isolated tetrahedral monovanadate VO_4^{3-} , and the peaks at 996, 704, 526, 487, 405, 289, 205 and 147 cm⁻¹ correspond to V₂O₅ crystallites. On the other hand, V-SiO₂-PEGx exhibited a sharp peak at 1040 and broad peaks at 920, 800 and 496 cm⁻¹ except for V-SiO₂-PEG3. V-SiO₂-PEG3 exhibited additional weak broad peaks 996, 704, 289 and 147 cm⁻¹. With an

Figure 1 Raman spectra of V/SiO2 and V-SiO2-PEGx catalysts

increase in the molecular weight (Mw) of PEG (ethylene oxide unit from 3 to 25), the amount of isolated VO_4^{3-} species increased.

Table 1 summarizes the results of the ODHP over V/SiO₂ and V-SiO₂-PEGx using lattice oxygen of vanadium oxide. V/SiO₂ (Run 1) afforded propylene selectivity of 81.5% with propane conversion of 2.2%. The ratio of propane fed to the catalyst and lattice oxygen in the V/SiO₂ (200 mg) was 3.8. When V_2O_5 was reduced to V_2O_3 by reaction (1), the maximum conversion of propane is estimated to 11.3%. Therefore, propane conversion of 2.2% of the theoretical conversion.

As seen in runs 2 to 4, with an increase in the Mw of PEG, propane conversion slightly increased from 1.6 to 2.0%. It must be noted that a very high propylene selectivity of 95% could be achieved with these catalysts. These results indicate that propylene selectivity is closely related to the amount of isolated $VO_4^{3^\circ}$. After ODH reaction, the used catalyst was completely re-oxidized to the original form according to reaction (3).

 $V_2O_3 + O_2(Air) \rightarrow V_2O_5 (3)$

Table	e 1	Effect	of	pre	paratior	ı metho	d on	ODHP
-------	-----	--------	----	-----	----------	---------	------	------

Dun	Catabyat	Catalyst SA	Catalyst SA C3H8 Conv		Selectivity[%]				Yield[µmol]		C3H6 ^{a)}
Kuli	Catalyst	[m ² /g]	[%]	C3H6	CO	CO ₂	Carbon	C3H6	H2	yield[%]	yield[%]
1	V/SiO ₂	228	2.2	81.5	10.4	5.7	2.3	29.5	0.3	1.8	15.9
2	V-SiO ₂ -PEG3	700	1.6	94.5	0.5	1.8	3.0	25.4	0.2	1.6	14.2
3	V-SiO2-PEG10	830	1.9	95.3	0.1	0.7	3.6	29.5	0.3	1.8	15.9
4	V-SiO2-PEG25	978	2.0	94.6	0.8	1.4	3.0	31.5	0.2	1.9	16.8

Flow rate: $C_3H_8/Ar = 5/20$ (mL/mL/min), reaction time: 8 min, reaction temperature: 450 °C

a) Yield based on lattice oxygen

References

- 1. F. Cavani, N. Ballarini, A. Ceriola, Catal. Today 127, 113 (2007)
- M. L. Pena, A. Dejoz, V. Fornes, F. Rey, M. I. Vazquez, J.M. Lopez Nieto, Appl. Catal. A 209, 155 (2001)